
Network Control Systems RTAI framework –
A Review

Deepika Bhatia*, Urmila Shrawankar
Department of Computer Science & Engineering, G.H.R.C.E. Nagpur

Abstract--With the advancement in the automation industry, to
perform complex remote operations is required. Advancements
in the networking technology has led to the development of
different architectures to implement control from a large
distance. In various control applications of the modern industry,
the agents, such as sensors, actuators, and controllers are
basically geographically distributed. For effecient working of a
control application, all of the agents have to exchange
information through a communication media. At present, an
increasing number of distributed control systems are based on
platforms made up of conventional PCs running open-source
real-time operating systems. Often, these systems needed to have
networked devices supporting synchronized operations with
respect to each node . A framework is studied that relies on
standard software and protocol as RTAI, EtherCAT, RTnet and
IEEE 1588. RTAI and its various protocols are studied in
network control systems environment.

Keywords- Real time systems, RTAI, EtherCAT, Ethernet,
RTOS

I. INTRODUCTION

 The correctness of real-time systems depends not
only on the exact results of computation [1], but also on the
time at which the results are produced. Real-time
computing is that in which the system correctness not only
depends on the correctness of logical result but also on the
result delivery time. So the operating system should have
features to support this critical requirement to be termed as
a Real-time operating System(RTOS). The RTOS should
have predictable behaviour to unpredictable external events.
“A good RTOS is one that has a bounded behaviour under
all system load scenario i.e. also under simultaneous
interrupts and thread execution”. Thus we can say that a
true RTOS will be deterministic under all conditions. These
operating systems occupy little space as compared to the
General Operating systems which take hundreds of
megabytes. Therefore, these systems are classified into two
categories based on their timing constraints: hard real-time
and soft real-time systems. In hard real-time systems, the
violation of timing constraints of certain tasks should not be
acceptable. For example, not executing a task before its
deadline may lead to catastrophic consequences in some
environments such as patient monitoring systems, nuclear
plant control, and flight control etc. On the other hand, in
soft real-time systems, although system performance is
decreased when deadline is missed but it does not have
serious damage on the system as these systems are fault
tolerant. In real time systems throughput is not so much
important, the responsiveness of the system matters. The
transmission of continuous media of multimedia systems is
one of the typical tasks in soft real-time system’s
environments. Hard real-time scheduling theory determines
the scheduling ability of a system depending on the worst
case execution times (WCET) of the tasks. The hard real-
time scheduling methods cannot be used in soft real-time

systems, because designing a soft real-time system using
hard real-time scheduling theory often yields a system
whose utilization is unacceptably low. The paper gives
review to hard real time system RTAI and its framework,
giving introduction to various protocols such as EtherCAT,
RTnet and IEEE 1588 etc.

Basically the Ethernet is based on IEEE 802.3 that can
support high-speed in LANs (local area networks).
Unfortunately, this protocol has not supported real-time
traffic earlier. Therefore, several researches of supporting
the real-time traffics on Ethernet have been proposed. Such
approaches either implemented or proposed the real-time
guarantees based on switch. Some of these approaches also
supported both hard and soft real-time guarantees. EDF
scheduling algorithm is studied earlier to verify the
scheduling feasibly and also to dispatch the coming
packets. There are two different approaches to provide real-
time performance with Linux: Improving the Linux kernel
pre-emption and adding a new software layer beneath Linux
kernel with full control of interrupts and processor key
features. RTAI is real time application interface which
implements the above mentioned Linux features. RTAI has
extended its API to allow remote (other host) procedure call
RPC. New API functions have been added with the
following syntax: replace the first two letters of the function
name (for example: given the rt_mbx_send(), the new
function RT_mbx_send() has been added); and the new
function has two new parameters: node and port. This
feature do not comply with any communication standard.
The EtherCAT technology is given which overcomes the
system limitations of other Ethernet solutions. RTnet is
studied which is a purely software-based framework for
exchanging arbitrary data under hard real-time constraints.

The rest of the paper is organized as follows:- In section
II related work from previous papers is presented. Also
various protocols have been studied. Advantages and
limitations of various techniques are discussed. Section III
gives the conclusion drawn from the review paper. Section
IV gives the problems and future directions that can help to
explore the related issues.

II. RELATED WORK

Hard real-time communication over Ethernet has been a
popular research topic for more than a decade. Various
algorithms and technologies have been discussed and
evaluated.

T. Chiueh et al., [2] proposed a token-based approach
which is further studied by F. Hanssen et al., [3]. In token-
based real-time networks, nodes transmit data when they
get the token. Token passing needs proper mechanism for
sending data over the transmission media so that no token
could get lost or gets duplicated during the sending process.
Thus the transmission media has to bear the overhead.
Another approach to guarantee real-time constraints over
Ethernet is to restrict the amount of traffic which is

 Deepika Bhatia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2380-2383

2380

transmitted by each network node in a certain period of
time. J. Loeser et al., [4] provides a model for traffic
shaping used in switched Ethernets networks.

Lorenzo Dozio et al. [5] studied issues related to the
design and implementation of high performance distributed
control systems with reference to the use of RTAI services
and mechanism. He studied two kinds of issues given
below:-
 “Can Ethernet be Real Time?”
 Should implementation of DRTOSes (distributed real

time operating systems) be based on application
specific hardware/software or on off the shelf
technologies?

Assumption has been made that to meet profiling
specifications some form of active structural control for
compensating the machine frame compliance and vibrations
is required, so the sampling rate should be as high as 10
KHz. If designed application is run standalone on a
GPCPU(general purpose central processing units) and its
execution timing checked, they found latencies in the range
of few microseconds. He discussed the real time application
interface (RTAI) , services provided by RTAI and RTAI-
Lab in detail.

A. RTAI overview

 The Real Time Application Interface (RTAI) project
began at the “Dipartimento di Ingegneria Aerospaziale del
Politecnico di Milano” in 1996/97 which provides a hard
real time extension to Linux. It is a cost effective tool to
support a activities related to advanced active controls for
generic aeroservoelastic systems and real time simulation.
RTAI is integrated into Linux through a text file containing
a set of changes to its kernel source code, and a series of
add on programs expanding Linux to hard real time by
installing a generic Real T ime Hardware A bstraction L
ayer (RTHAL). Figure 1 shows simplified diagram of
RTAI and Linux kernel architecture [10]. RTHAL performs
three primary functions:
 It collects all the pointers to the time critical kernel

internal data and functions into a single structure, to
allow the easy trapping of all the kernel functionalities
that are important for real time applications, so that
they can be dynamically substituted by RTAI when
hard real time is needed.

 "Reworks the related Linux functions, data structures
and macros to make it possible to use them to initialize
RTHAL pointers for normal Linux operations."

 "Changes Linux to use what pointed in RTHAL for its
operations."

B. RTAI Services:
RTAI does provide the required scheduler along with a

different types of services. The RTAI scheduler is fully
preemptible and can schedule directly from within interrupt
handlers so that Linux could not delay any RTAI hard real
time activity, as the delay could be fatal. RTAI schedulers
gives the following scheduling policies:
 First In First Out (FIFO) fully preemptable service for

scheduling. It helps to meet periodic tasks deadlines
with statically assigned priorities .

 Round Robin (RR) is like FIFO but a time quantum is
alloted, after which the CPU is given to any equal
priority task waiting on the ready list, for some time.

 RTAI provides its own small (20KBs) and effective
real time middleware layer, called net_rpc. It integrates
distributed and local applications by the addition of a
port identifier in front of any RTAI function call.

 Early Deadline First (EDF), scheduling for
dynamically assigning priorities in order to meet
deadlines of periodic tasks.

C. RTAI-Lab

It provides a framework to design, build, run and
monitor any suite of RTAI whether locally or in distributed
way. Also Syndex an automatic code generator is integrated
in RTAI-lab. It can optimize distribution of controllers on
available CPUs. It also takes the communication delays into
consideration.

Won- jong Kim et al. [7] suggested to develop
networked control systems (NCSs) to implement distributed
control from a distance. NCS consists of multiple nodes
communicating with each other over the communication
networks. A real-time operating environment is required for
the implementation of an NCS for handling the timings of
various events in the communications between these nodes.
Different factors, such as time resolution and capability of
multi-threading and periodic tasks, affect the selection of an
appropriate real-time computing environment.

The presented software architecture is based on the
UDP (user datagram protocol). The main focus is to
develop a real-time operating environment for the closed-
loop real-time control over distributed network. An NCS
with closed-loop control of a maglev test bed is
implemented on an LAN in real-time operating
environment. It also incorporates a novel predictor-based
algorithm to stabilize the system in case of successive
network delays and data-packet losses.

Jan Kiszka et al., [6] suggested that real-time Ethernet is
required to replace traditional fieldbuses. Earlier approaches
for example FTT-Ethernet, RT-EP, are the combination of
switches and traffic shapers. These approaches have various
transport and application protocols which are generally not
compatible with each other. Also, there are other transport
media beyond Ethernet 100Base-T approaching the real-
time domain: Gigabit Ethernet, wireless media as IEEE
802.11 or Bluetooth, and FireWire. Rtnet is given which is
hardware independent and flexible real-time
communication platform, and provides deterministic
networking. RTnet is a purely software-based framework
for exchanging arbitrary data under hard real-time
constraints. It provides scalability and extensibility

 Deepika Bhatia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2380-2383

2381

according to the application. It also enables the integration
of various other communication media besides Ethernet.

A. Base Services

RTnet contains a set of central services which are
required for most scenario. For example:-
 Packet Management

Packets are passed through the stack in the context of
the sending task.

 UDP/IP Implementation
In it the dynamic Address Resolution Protocol (ARP)
was converted into a static mechanism which is
executed during the set-up. Also, the routing process
was simplified. The output routing tables were
optimized for the limited amount of data.

B. FireWire Integration

FireWire, also known as IEEE 1394, is a high
performance serial bus for connecting different types of
devices. Initially it was targeted for consumer-electronic
applications, such as video transmission of high speed. The
RTnet mechanism [6] for real-time packet management is
applied to the FireWire stack as well. NIC driver and high-
level applications are both producers and consumers of
packets. RTOS semaphore is used for the synchronization
between server and tasklet queue. The server runs at a
higher priority than application tasks. The connection
between FireWire stack and RTnet core is implemented
through Ethernet emulation. By the use of Ethernet
emulation, FireWire functions same as other real-time
Ethernet devices in RTnet.

Ianluca Cena et al., [8] proposed EtherCAT a solution
based on real-time Ethernet (RTE). It uses a technique to
exchange data with I/O devices which resembles closely the
summation frame adopted in earlier fieldbus networks, such
as Interbus-S. In it, the communication efficiency achieved
by the designed module is very high It achieves
synchronization by distributed clock (DC) mechanism. It
reduces the implementation costs.

A. Distributed clock mechanism

In the paper DC-enabled EtherCAT slaves are provided
with an internal clock whose nominal period is 10ns. The
current time value is held in an internal register of 64-bit,
with a granularity of 1ns. It represents the time elapsed
from the January 1st, 2000. With EtherCAT, the data
exchange is completely hardware based on "mother" and
"daughter" clocks. Each clock can simply and accurately
determine the other clocks run-time offset because the
communication utilizes a logical and full-duplex Ethernet
physical ring structure. The distributed clocks are adjusted
based on this value, which means that a very precise
network-wide timebase with a jitter of significantly less
then 1 microsecond is available. However, high-resolution
distributed clocks are not only used for synchronization, but
can also provide accurate information about the local timing
of the data acquisition.

B. Performance of EtherCAT

The extremely high performance of the EtherCAT
technology enables control concepts that could not be
realized with classic fieldbus systems. For example, the
Ethernet system can not only deal with velocity control, but

also with the current control of distributed drives. The
tremendous bandwidth enables status information to be
transferred with each data item. With EtherCAT, a
communication technology is available that matches the
superior computing capacity of modern Industrial PCs. The
bus system is no longer the "bottleneck" of the control
concept. Distributed input and outputs are recorded faster
than is possible with most local I/O interfaces.

Gianluca Cena et al.,[9] suggested an architecture for a
real-time distributed system based on RTAI, RTnet and the
PTP(precision time protocol) protocol. The main advantage
of such an architecture is that, it can be ported on different
H/W and S/W platforms. A prototype has been
implemented and its performance is verified through
different experimental measurements and methods. The
industrial Ethernet solutions tackle synchronization with the
help of various defined protocols. For general purpose
operating systems IEEE 1588 precision time protocol (PTP)
is a better solution. Packet based networks like Ethernet are
inherently non-deterministic. In order to gain determinism,
distributed real-time applications need to be decoupled by a
deterministic abstraction layer. If all nodes are equipped
with highly synchronized real-time clocks, determinism can
be achieved. The objectives of the IEEE 1588 standard
are :-
 Highly synchronized real-time clocks in components

of a networked distributed measurement and control
system

 Intended for relatively localized systems typical of
industrial automation and test and measurement
environments.

 Applicable to local area networks supporting
multicast communications (including but not limited
to Ethernet)

 Supports heterogeneous systems of clocks with
varying precision, resolution and stability

 Minimal resource requirements on networks and host
components.

Through PTP, multiple devices are automatically
synchronized with the most accurate clock found in a
packet-based network, typically Ethernet. The RTS (real
time stack) protocol stack automatically determines the
most accurate clock, otherwise known as the Grand Master
Clock. During operation and after initial synchronization,
the PTP real-time clocks are constantly adjusted by
exchanging timing messages.
The RTS implementation uses statistical techniques to
further reduce residual fluctuations. Because the RTS IEEE
1588 protocol stack supports the PTP hot-pluggable
functionality requirement, devices may join or leave the
network at any time. Two important assumptions have to be
done for the PTP mechanism do perform in a correct
manner:-
 The time between message exchanges should be

small.
 The time required for a message to travel from the

master to the slave should be equal to the time it
takes to go from the slave to the master.

S/W based PTP protocol is implemented in the paper.
Its architecture is mostly inexpensive. With RTAI Linux
extensions, a complete distributed real-time system is
designed. RTnet framework in to support hard real-time

 Deepika Bhatia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2380-2383

2382

communications over Ethernet is adopted in the paper. The
use of both RTAI and RTnet achieves good accuracy, even
in case of heavy I/O load. He also studied that the
implementation does not require any specific H/W, no
changes are required to NIC drivers. Also the application is
not affected by interferences from lower-priority tasks, even
under high system loads

III. CONCLUSION

Standard Linux is not able to assure real-time
guarantees for applications. Several extensions, which
permit the use of Linux in real-time systems, have been
proposed earlier. The paper focuses on RTAI, which runs
standard Linux as low-priority task within a separate real-
time kernel. The open source protocol stack RTnet provides
deterministic communication over non-deterministic media
like Ethernet. RTAI and RTnet are able to meet deadlines
under high CPU loads, memory interactions invalidate real-
time constraints when more data than physical CPU caches
can handle is transferred at once. RTnet is an open source
hard real-time network protocol stack for RTAI which
provides real-time communication over Ethernet. RTnet
introduces an additional protocol layer called RTmac to
avoid collisions on the Ethernet. EtherCAT protocol is
studied for use in factory automation environment. IEEE
1588 precision time protocol is studied that provides a
method for the nodes to choose master-slave mechanism for
clock synchronization.

IV. PROBLEMS AND FUTURE DIRECTIONS

Further integration of FireWire, new media like Gigabit
Ethernet, and interoperation with additional middlewares
can be studied upon. Based on the connection to RTnet via
Ethernet emulation, the adoption of FireWire’s transaction
modes and clock synchronisation for RTnet services can be
addressed by researchers in future. CANopen over RTnet
can be analysed and can lead to the implementation of an

extended CANopen stack. We can plan to study the
interferences between the real-time tasks used for PTP
synchronization and the control application task, by varying
the network load and by using a different a real-time
scheduler such as, e.g, Xenomai.

REFERENCES
[1] Sedigheh Asiaban et al. A Real-Time Scheduling Algorithm

for Soft Periodic Tasks International Journal of Digital
Content Technology and its Applications Volume 3,
Number 4, December 2009

[2] T. Chiueh and C. Venkatramani, “Supporting Real-time
Traffic on Ethernet”, Proc. of IEEE Real-time Systems
Symposium, Dec. 1994, pp. 282-286.

[3] F. Hanssen, P.G. Jansen, H. Scholten, S. Mullender,
“RTnet: a distributed real-time protocol for broadcast-
capable networks”, Joint Int. Conf. on Autonomic and
Autonomous Systems and Int. Conf. on Networking and
Services, 2005. ICAS-ICNS 2005.

[4] J. Loeser and H. Haertig. “Low-latency hard real-time
communication over switched ethernet”. 16th Euromicro
Conf. on Real-Time Systems, Catania, Sicily, July 2004,
pp. 13- 22.

[5] Lorenzo Dozio et al. "Real Time Distributed Control
Systems using RTAI",Proceedings of the Sixth IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’03) 0-7695-1928-8/03
2003 IEEE

[6] Jan Kiszka, Bernardo Wagner et al. "RTnet – A Flexible
Hard Real-Time Networking Framework" 0-7803-9402-
X/05/ 2005 IEEE

[7] Won-jong Kim,,"Real-Time Operating Environment for
Networked Control Systems", IEEE, VOL. 3, NO. 3, JULY
2006

[8] Ianluca Cena et al. ,"On the Accuracy of the Distributed
Clock Mechanism in EtherCAT", IEIIT, 2010

[9] Gianluca Cena et al,"A Software Implementation of IEEE
1588 on RTAI/RTnet Platforms" . 978-1-4244-6850-8/10/
2010 IEEE

[10] Hao Cai, A Predictable and IO Bandwidth Reservation Task
Scheduler ,Nan Kai University, pdf, 2005

 Deepika Bhatia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2380-2383

2383

